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P
Eigenvalue problem for a class of cyclically maximal monotone operators

# Phil!ppe Clément
1. Introduction

The class of maximal monotone operators in a Hilbert space plays an

important role in nonlinear functional analysis since it can be identified with
the class of generators of nonlinear contraction semigroups in a Hilbert space
[1]. Therefore it is natural to consider corresponding eigenvalue problems for
it. As in the linear case, the study of such problems is considerably simplified
if a variational structure is present. In terms of a maximal monotone operator

] A in a Hilbert space H, this means that A is the subdifferential 3¢ of a

lower-semi continuous convex function ¢: H = ]-»,»], f.e. ye 9¢(x) iff
@(2) - o(%) > (y,2 ~X) for all z in H. In this paper, we are concerned with
the problem

(1) dg(u) + pu
where the norm of u, lul is prescribed. As in the linear case, we assume that
0 ¢ 8¢(0) . Therefore without loss of generality we can assume that ¢ takes its

values in [0,»] and ¢(0) = 0.

It is known [see for example Theorem 2.10 of [2]] that if H is a real

infinite dimensional Hilbert space, o ¢ Cl(H, R), is even, bounded from below,

and satisfies the Palais-Smale condition for some sphere (i.e. there is an R>0

t Supported by the Fonds National Suisse de la Recherche Scientifique.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.
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such that every sequence (un), with lunl = R, along which ‘tp(unH is
bounded and q)'(un) - (w'(un), un)un converges to G, where ¢'(u) denotes the
Fréchet derivative of ¢ at u , Possesses a convergent subsequence, then the
equation ¢'(u) = pu, lul = R, has infinitely many distinct pairs of solutions.

In our case, we prove that if the effective domain of ¢, D(¢) := {x ¢ le(x) < o}
is dense in H, ¢ is even and the condition: {xe H,w(x) < A} is compact for
all \ >0, 1is satisfied, then Equation (i) possesses infinitely many distinct
pairs of solutions.

We also consider a "dual" problem, where the existence of solutions of

(i1) (a¢)'l(v) 3wy, lvl =r>0

is proved. In this case the same compactness condition on ¢ as in the first
problem is employed but instead of requiring that D(¢) is dense in H, we
assume that ¢ satisfies a coercivity condition. The same technique is used to
prove the existence of positive solutions when the Hilbert space is equipped with
acone P and D(¢) is dense in P. We conclude with a simple application to

a second-order nonlinear elliptic partial differential equation. Further applica-
tions can be obtained by using known results establishing the maximal monoton-
icity of specific operators.

Concerning the proofs, the eigenvalue problem for the Yosida approximation
of ¢ (or w* the conjugate function of ¢) is studied first. Here we can use
the techniques developed initially by Lyusternik, Schnirelmann [3], and
Krasnoselski [4]. Then we get the results for ¢ by passing to the limit
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employing closedness properties of maximal monotone operators. [See [1]| an‘i
the references of [1]]. Finally a lower bound on the number of solutions is
obtained by using arguments related to those of [4]. See also the references
of [2].

Different results concerning eigenvalue problems for maximal monotone
operators can be found in [5], [6] where the existence of solutions is based on
a result of Rabinowitz [7] about global branches of solutions emanating from a
bifurcation point which generalizes a previous result of Krasnoselski [4]. In
our context, it can happen that no bifurcation occurs.

The author would like to express his gratitude to Professor P. H. Rabinowitz

for his suggestions and helpful assistance.

2. Results

Let H be a real infinite dimensional separable Hilbert space, with scalar

product (-, -) and norm |-| i

Theorem 1. Let ¢: H~ [0, »] be convex and even, satisfying:

@(0) = 0, (h f
{x ¢ H|¢(x)§x} is compact for all \ >0 (2)
D(¢) is dense in H . (3)

Then for all R > 0, there exists a sequence (uk. uk) € R‘ XH, ke IN such

that;




| {
a) 4, K

o0 >
by 9 (uk) By Uk pk__()

c) sup ofu, ) = +»
: : 3
<e¢ IN

Theorem 2. Let ¢: H -~ [0,«] be convex and even,satisfying:

0(0) = 0, 0= 80(0). (1)
{x ¢ Hlo(x) <\} is compact forall A >0 , (2)
lim 2EL
x| = > 'Xl (3)
Xe D(o)

Then for all R > 0, inhere exists a sequence (vk,v‘g € R’XH, k ¢ IN such

that:

a) Ivkl = R

-1
b) ode (vk) : vkvk, vk>o

c) inf ¢ "w‘?_ 0,
ke IN

e
where o (x) := sup{(x,y) - o(y)} is the conjugate function of ¢ .

ye H
(In particular if PN -P= {0},

Let P = H be aclosed, coavex cone.

P is a cone of "positive” functions).

Theorem 3. Let o: H -~ [0,») be convex and satisfy:

-‘-
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9l0) =0,

()
‘x ¢ Hlo(x) < \} is compact for all A\ >0, (2)
Do)y = P, where D(¢) denotes the closure of D(o) . (3)

Then for all R > 0, there exists (p,u) e ]R‘ X P such that

a) |lul =R
b) 9o(u) - pu p >0
c) e@(u) = inf o(v)
fvl = R
Theorem 4.

Let ¢: H ~ R be convex and weakly continuous. Then for all R > 0,

there exists X\ >0, ue H such that
a) lui =R
b) 9¢(u) - Au
C) ¢(u) = sup o(Vv).

[v[=R

Remark. In the theorems 1 and 2, the conditions sup ¢(uk) = o and

ke IN
% -
inf ¢ (v‘) = 0 imply that the equations 8¢(u) = pu, |ui = R and (9¢) l(v) 3 W,
kelN
[v] = R

possess infinitely many pairs of distinct solutions. Clearly by the

% |
oddness of 9¢(d¢ ), if (u,u) is a solution, then (4, -u) is another one.

Moreover, in the first case, since u 5

K belongs to the domain of 9¢, (p(uk) <o

hence the number of distinct solutions is infinite. Similarly, in the second case,

B PRI PSREE
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w'” (vk\ > 0, otherwise, by definition sup{(vk, Y) - o(y)} =0, hence my)zqv‘{. VA
ye H i

forall ye H. ¢(0) = 0 implies that Vi€ d9¢(0) and the assumprion(l), v, = 0,

which is impossible since lvkl = R >0 . Therefore the number of distinct

solutions is infinite.

3. Auxiliary lemmas and notations

Let H a real infinite dimensional separable Hilbert space For R >0 ,

BR is the open ball of radius R, ER its closure and BBR its boundary.

xn - x denotes a strongly convergent sequence and xq =% &-weakly con-
1 : . .
vergent sequence. For fe¢ C(H,R), f'(x) is the Frechet derivative of f at

> ik fl, denotes the restriction of f to 9B_ . X ¢ dB_. is called a critical
dBR R R

point of fiaB i fix) ~ {f'(x),x)R'zx =0. ac¢ R is acritical value of

R

if a = f(x) for some critical point x of f
R BBR

For R>0, be R, if every sequence (xn), xnc aBR, along which

f‘E)B
' ' -2 - revae
f(xn) - b and |f (xn) - (f (xn), xn)R xnl -0 possesses a strongly convergent

subsequence, we shall say that flaa satisfies the Palais-Smale (P. S.)

R
condition at b |2].

It is known that the notion of genus 1s useful for the charcciernization »f
critical values. Let us recall some facts about the genus of & set. Let
L(H):= {AZ H - {0}| A closed, symmetric}) . For A« T(H), let
y/A) := Inf{n ¢ IN| there exists g: A=~ R" - {0} which is continuous and odd !

with the convention Inf @ = +% . y(A) is called the genus of A. [2], [9]. It

s vt g v

follows immediately from the definition that if y(A) - k, B: X(H) and

-6-




&

there exists g: A = B continuous and odd, then y(B) >k . In particular, if
A _ B, y(A) < y(B). We shall use the fact that if Ae¢ X(H), A compact,

then y(A) <=, and if A< (H) is homeomorphic to a k dimensional sphere

N

S . by an odd homeomorphism, vy(A) = k. [2], [4].

For R>0, ke IN, we define R:- {A
, Y,

R LR s ,
Yy # 4 and Birs % When the context is clear,

aBR|A compact, symme:iric,

yiA) >k } . Clearly
we shall omit the subscript R. Finally, we recall that if f: H - R is weakly

continuous f >0, f(x)- 0 if and only if x = 0, then c?:: sup_ int f(x)
reyk X< I

satisfies: i) 0 < c,R < o and ii) inf cR = 0421 14}
K k
ke IN

We are now ready to state the first lemma.

Lemma 1, Let f e Cl(H, R} with |f'(x) - 'y < fo-yl for some M >0 .

Let R>0 and b= inf f(v).

vl=R
If f is even, for k ¢ IN, let bk := inf_ sup f(x) and
I"eyk Xe I
Cy = supR inf f(x)
r‘eyk Xe I”
Assume that f|83 satisfies the (P.S) condition at b (resp. b , ck). then
R
b(resp. b ,c ) isa critical value of fIaBR ;

Remark. This lemma can be deduced from the resalts of [2], [4].

For the sake of completeness, we shall give a direct proof here.

Proof of Lemma 1

We consider the following associated differential equation:

-l =




-

d -2
Tl: = -{f'(u) - (f'(u),uwIR " u] t>0

£3:.0
IU(O) e B ofs . T

Since the right hand side is locally Lipschitz, for x e H, (3.1) possesses
a local solution on some interval [0, t(x)[. By taking the scalar product of

(3. ) with u, we get, if xe BBR :

.

1 | 2 -2 2
Edt IU‘ J

ful -(f'(uj,u) [1-R

lu(0y|® = R®

By setting v = !ul'2 we get a linear equation for v, on [0, t(x)[. wv(t) = R2
is the unique solution, therefore u(t) remains on aBR . But on BBR, the
right hand side is globally Lipschitz and by a standard result we get:

i) " xe aBR, T ! u(t,x) solution of (3.1) with Iu(t, x)l2 = RZ :

ii) ¥t >0, x - u(t,x) is continuous, and odd if f is even.

By taking the scalar product of (3.1) with U we get: lﬁlz = -:—t f(u(t, x))
since (u,d) = 0 . Therefore f(u(t)) is decreasing. Since lu(t)l = R and
f maps bounded set into bounded sets, f(u(t)) is bounded. There exists

a(X) ¢ R such that: iii) f(u(t,x)) | a(x) .

e

Consequently Edf f(u(t,x)) - 0, as t- o ., But f(u(t, x)) =

Q.

t
- | f1uy- f'(u),u)R'Zulz . Hence

iv) |f‘(u(t, x)) - (f'(u(t, x)), u(t, x))R'2 u(t, x)l-* 0 as t - o

-8 -




Now consider b (resp. b ) . These quantities are finite since f is

K “k
bounded on UBR . We claim that b (resp bk’ ck) 1s a critical value if for

each & >0, there exists Xs € BBR such that b < f(u(t, xe)) <b + e for all

t >0 . Indeed, if it is the case, for each ne¢ IN, we can find X € BBR and

t >0, suchithat b < fiuft %X 1< b 1 and |f'(u(t c =Rt xR
n s n n e n n n 1 i ¢

=2
<
u(tn,xn))R u(tn. xn)| <

3 )

Then if yn = u(tn.xn), yn € BBR, f(yn) - b and
Pl

ff'(yq) = {T* 0% yn)R' i 0. By (PS) at b, there exists a subs2quence

Yy =y and clearly y is a critical point of f|a and b = f(y) is a critical

n B

k R
value,

First consider the case of b =I inf f(v) . By definition, for each ¢ >0 .
vl=R

there exists x_ ¢ 8B, such that f(xe) <b+e. But f(u(t, xs)) < f(xe) <b+e

R

for all t >0 and f(u(t, xs)) >b since uft, xe) € aBR . This concludes the inf

case,
Now let bk= inf sup f(x) . For each g >0, there exists re € y::
ey, Xel
k
such that sup f(x) < bk+ €. Let ht(x) := u(t, x) . Since ht: aBR - BBR is con-
xe T
tinuous and odzd, ht(r‘e) € y:: . Therefore for all t>0, b < max f(x)

Xe ht(l"e)
Thus there exists x(e,t) e I‘e such that bk < f(u(t, x(e, t))) . Now choose a

seguence tn? ® and define X

:= X(e,t ). Since I is compact, there
=, N n €

exists X_ e I‘e such that xe i X t ¢t o . We shall again denote this
i =g j :

subseguence by L and tn. For each t >0, we have u(t, x(c,tn)) -
-2

e e

e

R G S

| e,

u(t, xe) " Hence f(u(t, x(e, tn))) - f(u(t, xc)) é We have

-9.




bk & f(u(tn, x(e,tn))) < f(u(t,x(e,tn))) for tn_>_t . Therefore

b, <flult,x )} <fx) foreach t>0. BUY e s thus X ) 5B, v
K - £ - € £ e € — k

Thus, bk < f(u(t,xe)) < bk r& forall t>0, and we are done. The

case of ck := sup inf f(x) follows from the preceding one, by observing
ey, XeI
that -f satisfies the assumptions of the preceding case.
Now let us recall some definitions and results about convex functions
in a Hilbert space. For references, see for example [1]. Let ¢: H= [0, ]}
convex, lower semi continuous with ¢(0) = 0. Then A - 9¢, the subdifferential

: -1
of ¢ is #2 (since 0 ¢ 9¢(0)), maxima! monotone and J. := (I + \A) is

~ 3>

>

, 1
a contraction, defined on all H for \ >0 . A\ =T (I - I)\) is called the

Yosida approximation of A. We have D(¢) = D(9¢) and Int D(e) - Int D(do) .

1 2 A 2 ; 1
w\(x) .= Inf {=— 'x-y1 toly)} = > IA\xl - q;(]\x) is C (H, R), g >0

2\
ye¢ H 1
¢ (0) =0 and ¢' = A . A_ 1is Lipschitz continuous with constant —
X A A A X
w\(x) t ¢(x) as x i 0. We shall use the fact that if lim w: = oo, then
X| >
xe D( @)

-1
(9¢) is defined everywhere and maps bounded sets into bounded sets.

sk
The conjugate function of ¢, ¢ (X) := su% {(x,¥) - o(y)}, is convex.
* ye "
lower semi continuous and >0, ¢ (0) =0 and (x,y)< ¢(X) +¢ (y) by defi-

% £
nition. Also (x,y) = ¢(X) + ¢ (y) iff xe 8¢ (y) or ye 9¢(x), since

s | i} % % 1 2 % %
d9 =(0¢) . Wehave (¢ ) =¢ and if e(x) :=§.|X| . w)\=(\e+q) )

o

Let us prove this last identity. If A is maxima' monotonz [ = (I+A)"1 + (I+A'l)'l
Indeed if x¢ H, x=¢ +n with § = J;¥ and n = A x. [E,n] € A since
«}J0w
PRI s ,




A C All. Therefore [n,£] e A'1 which is maximal monotone. Here £e !
X=n+€ec«nt Ahln (1 + A 1)(1-1) . Tnerefore n = (I + A-l)-l(x), hence

v

-1 -1 -1 L , :
x = (I+8) x+(I+A ‘) x . Since 9¢ is maximal monotone, s2 is \d¢ and

R . -1 »3 =1
I=(I+X0) "+ (1+(\8@) ) . But I- (I+ X\dg) \(a")x = (I+ (\do) ) ’
Henze ¢, x'l(I ¢ (\8«.o)'l)'l = (AI 4 (\at,o)'l % Sl (AI + am'l)-l o Pt

- * 5 =1-1 L
NM+00 =98Ne+te ] and (AN +3¢ ) =(3[xe+o ) =0[(re+0) ].

¥ % CE
Therefore N ={xe +¢ ) *+C but w\(O)- 0 and (e + @ ) (0) = 0, thus

x X

= +
@y (\e + ¢ )

Finally let us recall some property of convergence. If x e D(9¢), then
(bw)\(x)-* (aw)u(x) as \ : 0(whzre 3¢ (x) is the element of 8do(x) of minimal
norm) and I(Bw)X(X)l < oo’ xy| .

We conclude this section by stating a lemma which will be used later.

Lemma 2. Let : H - [0,%] convex, lower semi continuous, with o(0) = 0.

Let )‘n ! 0 as n—+oo, and let (a)\ » Xy ) e R XH such that 1) e e
e n n n
2) xx - X 3) axe D(U) 4) q,)‘ (x)\ ¥ a)\ x)\ .

n n n n n

Then a) 9y(x) 3 ax

b) lim Yy (x)\ ) exists and is equal to y(x) .
n+e© n n

Proof of Lemma 2

a) By the monotonicity of q;'x , we have:
n

( _¢): V), X, =v)20 for all ve D(8y)
n

a X
)‘n )‘n n

«ll-

E




Hence (aX - (dL)" (V), X - v) >0 forall ve D(dy) . Since 9y” is a principal
section of 9., xe D(9y) and ax e Bu(x) .

b) We have

- Ay > L,‘ -
- (x) > ( \ (x).x)\ X) en

n n n n n

(x\ )’x‘xx )Tn

\ g
n n n n n n

Hence “\ (x) +E:n < Yy (x\ ) < YA (X) - n, But N (X) * W(x) < o, since
n hh n n
oL { - - it = i
x e D(d.), and €My 0 since Xy x, x(xx) @ x, s bounded,
n 5 SR n n

as is o'\ (x) .
n

4. Proof of Tneorem 1

a) Critical values

For R>0, ke IN, let Yy = 3= 3BR'I"¢ Z (H), I' compact, Y(r)zk} .

bk := inf sup ¢(x). We claim that bk< o, foreach ke IN, and each R>0 .
ey, xeD
First observe that for each R >0, and each ke IN, BBR N D(¢) contains a k-

dimensional sphere I', . If not, since xe D(p) N BBR, with R' > R only if

k
xe D(g) N 83 (by the coavexity of D(y) and the fact that 0 ¢ D(¢)), we would

R)
have D(¢) C El where E! is a f-dimensional subspace with £ <k . But this

would contradict assumption 3). Now let R >0, ke IN given. We know

that for ¢ > 0, there exists a k -dimensional sphere I‘iﬂ contained in

R+e

e span I‘k+ . Ek is a finite dimensional subspace.

Let ¢ the restriction of ¢ to Ek . Clearly D(;)_T_} r

0
BR+e N D(p) . Let E

R+e

K and ¢ 1is continuous

-12-




. . » R+e
at each point x contained in the interior of Conv I' (convex closure) relative

k
R+e R

: R
E,. in particularon ' := 8B, N Conv T T, isa k-dimensional sphere,

k k- R k
. i e R R ; .R S
the genus of l"}_ is K o] I‘k g s Since 1 K is compact and ¢ is

~

ontinuosus on it, supR O (X) supR o(X) < ©, tharefore bk - inf sup ¢(x)< o .
X (‘k Xe I L e Yk Xe 1
0< bk < bk»l follows immediately from the definition.

For R>0, ke IN, \ >0, let b,:: inf sup . (x) Since ¢ * @
ey Xel

as X i 0, we have b;\( < bi if w<x and b}’:i bk’ for A > 0. Therefore

-~ \ -~
bk := sup b, <« . We claim that sup bk = o, If not, there exists C >0,
\>0 i ke IN

such that b; <C forall x>0 and k¢ IN. By the definition of b;:, there

exists I° such that sup ‘pl"k(x)ﬁc for all k¢ IN; hence

Xe Fk

X) < C and sup ﬁlAl/kxIZEC. But 'Il/kXI = Ix-El Al/kxl

k€ Vi

sup .o(]l/k

Xe I‘k Xe 1"k

>R -V2C L, if xe ", . Therefore there exists k_ such that for k >k |
- v k k 0 -0

R ~
Xe T x| 2 3 - Let T be the image of I, by I A I'. is compact

e T k k

and symmetric since T  is compact, and symmetric and Il/ is continuous and

k
odd. Since 0 ¢ Tk for k > ko_. r‘k € L(H) . Since Il/k is continuous

k

and odd, y(?k) > y(r) >k for k>k . Let T = (xeHlpx) <C and
(x| > ; }. T is not empty since L = T for k >k, - T is compact by

assumption 2), and symmettic since ¢ is even and 0 7’-1: by definition; therefore

yiT) = kl < o, But, for k = max(ko,kl) t1, Iy CTr, hence y(ri-) ikl
and y( ;E) _>_'l'<' > kl’ a contradiction. Thus sup ;k =00 ,

ke IN

l3=




b) Approximate solutions

£

Llet R>0, ke IN. Let T 2= - if B >6, and x>0 arbitrary if b_
Zbk k ¥
We claim that for 0 < )\ < T, there exists (pk \ uk \) ¢ R XH such that:

: ~ 4
luk. \l R (4 1
= > 0 ‘:l

L T U S T R = s

A

o\(Uk’ \> , bk ; (4. 3)

- 1
Let 0 < Xx< X . Since e, ¢ C (H,R) and (p'\ is Lipschitz continuous, by

A

the Lemma 1 we are done provided that o satisfies (P. S) at ‘q( e

ug

A ' ' -2
xn € 8BR such that .p\(xn) - bk and wa(xn) - («p)‘(xn), xn)R xnl 0 . We

: 4 i -2
have wx(xn) g Ax X and o Ix xn + xAX xn . Therefore (1 - MA)\ X s xn)R )A\xn
-2 -2
- (Axxn, xn)R ]x xn - 0. But 0< X(A\xn, xn)R < 1. We can extract a
subsequence, still denoted by X s such that )‘(A\xn‘ xn)R'z - ae [0,1].

We claim that « < 1. Otherwise I)\ xn -+ 0 since A\ xn is bounded and

e . A 2 1
(A X ,x JR™" doesn't converge to 0. Then 5 lexnl = FAX,x) -

2
1 (J.x ,A x)— 1 . Hence by using the lower semi continuity of ¢ (Assump-
Sl O R N AN 2 2
A 2 A R A R
tion 2), 0= ¢(0) < Um o(], x ) = lim [o, (x ) - 5 [A x_|7] = Br-2x <K -3%=20.

A 2
a contradiction. Therefore a < 1. Since (px(xn) o IA)‘xnl + ‘p(]kxn) is
bounded, ¢(Ikxn) < C and by Assumption 2 , I\ xn lies in a compact subset of
H . We extract a subsequence still denoted by xn, such that Ixxn -2z.

-1
Therefore A\ xn converges strongly to a—')‘;- z and e - (1-0)'l z . Thus

-14 -




?y satisfies (P. S) at b:‘( %

28
follows from the moaostony of w'\ and the fact that m')\(O) =0

Finally, observe that in (4. 2), By o >0

c) Limit procedure

Let R>0, ke IN. We claim that there exists \n .. G and u, H

i \ laal = ‘,’ -
such that uk. \n -y . 1ot O € k< N go)\(u}S \) bki bk » . Therefo:

bk and . |A

Z
3 Fed By Assumption 2), there exists a

ol o S "

AR AT

y 2
seguence )‘n !} 0 and u_ ¢ H such that I)‘ Uk',\ e X'A\uk,\l -k

n n

k

implies that \n A\ uk'\ - 0, hence uk’\ = I\ uk.\ + \nA\ uk oo

n n n n n | R

In particular fuk| g

We shall prove that Y is bounded. We already know that AN >0.
’ n ,

Assume that there 2xists a subsequence )‘n { 0 such that R +x . For
j i
n’_ big enough, P A >0 . We have for all ve D(d¢); J
’
n
j

by the monotonicity of A)‘ . Since H___— A v, u

1

£ A v-=0 (A v is bounded since v ¢ D(9¢)). Therefore
k! n A\ 1N
n k, A n
n i
we get: }
(uk, u, - v) >0 forall ve D(9¢) = D(¢) = H

by Assumption 3 . But u_# 0, x coatradiction.

k

We know that u - u

K.\ | < C, therefore we can extract a
)
n

K’ l“k, A
n

-15.




subscquence, still denoted by \ , such th: > U, - > 0
subsoquen still denote y 4 uch it uk.\ uk uk.\ “l:—
n n

We ca pply Lemma 2, with ! : % ; bsarve

can pply R u\ p.k.\ 2 x\ uk’\ O

MLl n n n n
that My Uy ¢ Diw) 7 H .. Tneroforc\? we have Iukl R, am(uk) My uk and
~ -
o(ukb lim e\ tuk. \ ) = lim ')kn sup b)l‘( bk' But in the first pa-t of the
\"\.” n n \n-() A >0

proof, we showed that sup bk = o Henze sup muk) = sup bk =» and
ke IN <IN ke IN

we are done.

5. Proof of Theorem 2

a) We claim that if : H ~ [0, | satisfies the hypotheses of Theorem 2,
then D(. )= H, o is weakly continuous,  (x) - 0 if and only if x = 0 :
N ;:(x) -0 iff x=0 and o is even. { is convex, even, lower semi con-
tinuous by Assumption 2, # +» by Assumption 1, and Buf = (84,)'1 is defined
everywhere and maps bounded sets into bounded sets by Assumption 3. Then
D(u:’) =R . , is convex lower semi continuouds and by Hahn-Banach, weakly
G 2 *
lower semi continuous. We prove that if xl_1 - X, then lim (xn) Ly (x).
By the surjectivity of 9., there exists yn ¢ D(9y) with xn € Bq;(yn) . Since xn
RS

i i < | = L g
is bounded, soc is ¥y and u(Yn) < w(yn) +y (xn) (xn, yn) <C

By Assumption 2), lies in a compact subset of H, therefore

* * b g * *

lim (yn,xn-x)z 0. But (xn)f_(yn,xn~x) + ¢ (x), hence lim y (xn)f_¢ (x) .
n ~son * * B
Therefore ., is weakly continuous. Clearly ¢ (0) = 0. Assume § (x) =0 .

Then (x,y) < uly) for all ye¢ H, hence xe 8y(0), so x =0 by Assumption 1.

=« ¥
Clearly 9. (0) - 0. Assume 9y (x) - 0, then xe 9y(0), hence x = 0.

-l16-
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Finally, 1t is clear that N even, since V’(-x) = sup {(-x,y) - oly)} =
* ye H

sup {(X,¥) - o(-y)} = sup {(X,¥) - w(V} = ¢ (X

-ye H -ye H

Observe that for all \ >0, \e + ¢ satisfies the assumptions of

*

b2
Theorem 2. (e(X) : -lel ) . Therefore for all A\ >0, ¢ and (¢ )\

et+teo ) (\e + m)‘ are weakly continucus, >0, 0 iff x=40,

b3 o % 3
do (X) and OJd(¢ )\(x) Ot 2=0. ‘s » . Lo ))\ are even. Therefore,

.3 -4
by a result stated in Section 2, ck s sup min ¢ (x) and C;‘( :- Sup (e )\(x)
I'e Yy X  of I'e Yy
satisfy » >c,, c\ >0 and inf ¢, = 0. Since c\ < Cuy Cy 3= SUP c)‘ 5
k?” 7k k k- "k k k
ke IN >0

satisfies Ek> 0 and inf ;]. =100
keIN

b) We claim that forany R>0, ke IN and X\ >0, there exists vk . -
’

Vk, X > 0 such that

Ivk xl = R (5. 1)
’

%*
(¢ ))‘ (Vk, X) = Yk, )‘vk, \ (5.2)

B . A B
(o ))‘(vk,)\)-ck . (5. 3)

*
First observe that if (¢ )x (vk’ )‘) = vk, \vk, \

then vk, X has to be > 0. Indeed, vk, \

% L]
and the fact that (¢ >\)' (0)=0. Itis >0, since (¢ )‘)‘ (x) =0 iff x=0,

for some Vi ) € R,
’

is >0 by the monotonicity of (¢*)‘\

*x
and v # 0. Now (5.1) - (5. 3) will be proved, if (¢ ))‘ satisfies the

k,\ 88R
(P. S) condition at c)‘ such that

K’ by Lemmal, Let X € 9B

R’

. i

A s S A B 90




: \ -2
(e ) (x)~=c >0 and [(o K)o )ix ), x R 7x | = 0. sin

- BBR, we can extract a subsequence,still denoted by xn. such that
n

& %
xn = xe¢ H. We claim that (¢ )'\(xn) - (o \)‘(x), at least for a subseguenc

*

First observe that (¢ )\ = (e + w)w, hence (q)‘r)' alm‘ ).} = 8line + o) |
/ 2
@re + o) = A1+ 90) Y. since 1im  A2IXIE 4 o) % B8 san
Ixl<e Ix|
xe D(¢)

bounded sets, into bounded sets. In particular yn = (Al + Bmfl xq is bounded,
s 0 therefore < + o* =X . -\y .V
But X \yn < m(yn), herefor w(yn) “ w(yn) ’oix v, 2 M)

< (xn,yn) <C forsome C >0 . By Assumption 2), we can extract subsequences,

still denoted by X and such that Yn ~-ye H. Now (yn - (N + am'lv
xn -Vv) 20 forall ve H, therefore, (y - (\I + a.p)-lv, X -v) >0 forall
ve H and y = (A + aw)'lx by the maximal monotony of ()] + aw)'l Ft

% * 4 - 3 s
(0 )y (X)) * (o )\ (x) and X - RZ[((w )3 (%), x)] l(w )1\ (¥) since (o )\ (%), %) >

(p;(x) >0 . Therefore (:p'ﬁ)xl satisfies the (P.S) condition at c;
oB
R

¢) We claim that for each R >0, each k¢ IN, is bounded as \ . 0.

YKo\

We h "N =00 ), =2}, =q0er ) and l8e) v, )l < 120
e have (¢ = Ne K AR e S K \ 2N kS @ (Vk,\

But (8@).l maps bounded sets into bounded sets, so lvk \| = R'l|(<n:")'\(vk \\l
Taey RoRea C»0.8 B P T ';
<R "[(3 ) (vk’ g or some + 89 (o)) (vk’ yJ S e N Ve s

# 2 ¥ .
+ (¢ ))\(vk,ka, x)- (vk’ \’ Vk,)\vk, X)iCR . But ((¢ ))\) = \e + ¢, SO

olv, )< CRZ . Therefore v lies in a compact set
k,\" = k, X
of H. We can extract a subsequence xn { 0 such that vk i vk and
’
n
*®
Vk,x gt Since vkvkc H=D(¢ ), by Lemma 2, we gat; |vk| ® R,

n

-18 -
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%= = * A gy A
9¢ (v,) v, v, and ¢ (v)=1lim (¢ ) (v )2 8up T =€ = o )
k K.k k )‘n 0 xn k, )‘n \> 0 X k 3
-1
P 1 > e > Do which
(9¢) (vk) ieVi Again " A 0 and even 0, otherwise vk € 90(0), whic!
is impossible by Assumption1l and the fact that |vkl = R. Moreover we alreardv

~

x
know that inf S = 0, 80 inf ¢ (Vk) = 0.
ke IN keIN

6. Proof of Theorem 3

a) For R>0, let b:= inf ¢(x). BBR N D(e) is not empty, otherwise

o |x|=R
D(e) - BR' which contradicts Assumption 3. Thus 0 <b< =®. For A\ >0,
let b":= inf ¢ (x). 0<b <b.
[x|=R 3
b) Let R >0, X 3= %)— if b+ 0 and arbitra~y positive if b= 0. If

0< )\ < T, w\l&BR satisfies (P.S) at b, as in the proof of Theorem 1. Then

there exists u_e¢ H, uxzo such that 1) qul =R . 1) w')\(u)\) £

X : u

AN

iii) m\(u)\) = b)‘
c) We can apply the same proof as in Theorem 1, to get the existence of a

sequence )‘n { 0 such that u\ ~u and p, - pu >0 . Observe that we get

N
n

(u,u-v) >0 for all ve 5?87) ='11-)T;) = P. Since P is a cone, we can choose

v = 2u and we get the same contradiction as earlier which proves the boundedness
of Byt So By U By = and pue P since p >0 and ue P. There-
fore pnu € 5(7) arr:d we can invoke Iemma 2, to get d¢(u) > pu and o(u) =

lim N (ux ) . But ¢(u) = lim 25 (u. ) = sup bx§b= inf o(v) . Since
A0 Tn n A 40 "n Tn a>0 [v]=R

|u| = R, ¢(u) = b and this concludes the proof of Theorem 3.

i
¢
H
i
*
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7. Proof of Tneorem 4

let R>0. Then BR is weakly compact and ¢ is weakly coatinuous.
Therefore there exists u e -B-R such that ¢(u) = max e¢(v) . Since ER and
fvI<R
are convex, U e ciBR or can b2 chosen in BBR if there is more than one

maximum. Since D(e) = H, D(d¢) - H. Therefore for all z ¢ aBR, 0 > ¢(2)

- o(u) > (y, z-u), for y ¢ 9¢(u). If 0 e 8o(u), we are cone. If not, let

R , Ry
VG ao(zu). y; 0 . Then (-l_::T’:-U) <0, for all ze dBR . By taking z = T—fy , we
get R < q?yi- , u) hence ‘Rﬁ' = u and Od¢(u) : \u, for some X\ >0
S

8. An example
Let Q= an a bounded domain with smooth boandary. Let g = R X R
an odd maximal monoton2 graph with 0e pB(0) and D(B)=R. Let j: R= R
the unique convex function such that p = 9j and j(0) = 0.
2 1 2
Let H=L17(R) and ¢: H = [0,%] defined by ¢(u) := 3 f grad u dx +
Q
f juddx if ue W l’Z(Q) and j(u) e LI(Q), +o otherwise.
Q
It is well-known [see for example [8]] that ¢ is convex, even, lower
s 1,2 2,2 2 i
semi continuoas, D(3¢) = W' @ N W77 N{uel (@) 1p) e L°(2y) and
d¢(u) = -Au + B(u) . Since the injection of Wl’ Z(ﬂ) into Lz(n) is compact,
{ue LZ(Q)|¢{U) <c} is compact in L2 () forall ¢c>0.
Clearly D(¢) is dense in H . Therefore ¢ satisfies the hypothesis
of Theorem1 and for all R > 0, there exists infinitely many distinct pairs of
solutioas of

-Au + B(u) 5 \u, f lulzdx & RZ, u e Wl’z(mﬂ WZ’Z(Q) and Blu) e Lz(m .

Q
(*)

-20-




By a standard regularity result u« Cl’ (23 for ac ]o,1] . If B is univalued

1 2. ;
and belongs to C(R), ue C a(m and therefore u is a classical solution

O (%) .
Clearly o satisfies the condition lim ‘p'(u‘) = +», If we assume
luf+ao 'Y
ue D(¢)
moreover that 0= 3(0), then 0 = d¢(0). By the Theorem 2, we get the existence
N =L 3 ; : 2 2 2
of infinitely many distinct pairs of solutions for (%) satisfying X\ f |u| dx =R -

: Q
™ 2 %
ue W ’Z(Q) n w 'Z(Q) with B(u) e L () .

As an application of Theorem 3, we shall give the following lemma.

Lemma 3. Let H a real ordered Hilbert space with a positivecone P satisfy

ing (u,v) >0 if u,ve P and such that for all ze P, there exists z+, 5 e P

with z=2 -2 : (z+,z') =0. Let ¢: H-[0,»] convex satisfying

®(0) =0 (1)
{x ¢ Hlo(x) < c] is compact for c >0 (2)
Die) D P 3)
(1+xa¢)”p:_'x> for all x >0 . (4)

Then for all R >0, there exists ue H, \ >0 with
a) |ul =R
b) 3w(u) 3 Au

c) ue P

LRl




Proof of Lemma 3

Let ¢ := ¢ + 1P where Iy H-» [0, »] is defined by I(w) = 0 if ue P

and +» if u¢ P. By Proposition 4.5 of [1], ¢ = O + DIP and D(e) = P

Clearly ¢(0) = 0 and ;; satisfies Assumption 2 of Theorem 3, so for all

-~

R > 0, there exists \ >0 and U ¢ bBR N P with o(u) - inf o (v) and

- 2y i g _lvI-R
dp(u) \U. Let we alp(u) such that de(u) + w 2 \u . We have

Blp(fn - {z ¢ H| (2, v-u) <0 forall ve P} . We claim that if 2z ¢ BIP(CH .
zc¢ -P and (z,u) =0 . Indeed, by assumption there exists z and z ¢ P

suchthat z-z' -2z  and (z,z7) 20. Hence for all o >0 we have alz’ |
- +

" (z,u) < 0. This is possibleonly if z =0. So ze -P. By taking

V= %E, we get -Z]-((-z), -;) >0, hence (z, E) = 0. Sowehave u ¢ P and

= -we P suchthat i) u+ de(u) > (\hu + 2z, ii) (u,z)=0. Let ulu) =

N

|u|2 + ¢(u) - (M-l)('\;,u) . From i) and ii) we get c.;(ﬁ) = \;,(G) - (;, G) < u(u)

O |

-(z,u) forall ue H. Since z ¢ P, y(u)<y(u) forall ue P. Since ue P,

w(_ﬁ) =Inf G(u) . But Inf y(u) = Inf y(u) . Indeed, there exists Ue P such
ue P ue P ue H

that ¢(a) < y(u) forall ue H. Such u is unique and defined by Q= (I + 8‘,9)‘1

(Ml)a . By Assumption 4 and since ()\+l)5e P, x=1e P . Consequently, by
uniqueness, u=u and U= (I+30) (AU or dptu) = \u. This con-
cludes the proof of Lemma 3.

As another example we consider again the equation

(*) -Au + B(u) 3 \u, lul =R. wue Wz’z n Wl’z

w22«




m‘ LR

We already mentioned that Assumptions 1), 2), 3) of Lemma 3 are satisfie:
It is a standard result that the solution of the equation u - \Au + Apluy - f
s 2 ) :
balongs to ’L+ if \>0 and fe L+ . So tne lemma can b2 applied and for 1}
e 1
R >0, (*) possesses a positive solution, which is G’ O(Q‘, by a standar::
regularity argument. Moreover if B is univalued and Cl, ue C* () an

u(x) >0 for xe Q.

33
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